organic compounds

 $T_{\rm min}=0.965,\ T_{\rm max}=1.000$

4354 independent reflections 2961 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.072$

(expected range = 0.950-0.984) 11183 measured reflections

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

t-3-Ethyl-r-2,c-6-bis(2-furyl)piperidin-4one

S. Balamurugan,^a A. Thiruvalluvar,^a* R. J. Butcher,^b A. Manimekalai^c and J. Jayabharathi^c

^aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thaniavur 613 005, Tamilnadu, India, ^bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and ^cDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India

Correspondence e-mail: athiru@vsnl.net

Received 1 November 2007: accepted 22 November 2007

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.002 Å; R factor = 0.059; wR factor = 0.194; data-to-parameter ratio = 25.0.

In the title molecule, $C_{15}H_{17}NO_3$, the piperidine ring adopts a chair conformation. The dihedral angle between the two furyl rings is $72.4 (1)^{\circ}$. The ethyl group and the furyl rings have equatorial orientations. Molecules are linked by N-H···O hydrogen bonds.

Related literature

For a related crystal structure, see Thiruvalluvar et al. (2007).

Experimental

Crystal data

C ₁₅ H ₁₇ NO ₃
$M_r = 259.30$
Monoclinic, $P2_1/c$
a = 5.1620 (2) Å
b = 20.2855 (9) Å
c = 12.9825 (5) Å
$\beta = 91.128 \ (3)^{\circ}$

 $V = 1359.18 (10) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 200 (2) K0.41 \times 0.36 \times 0.18 mm

Data collection

Oxford Diffraction Gemini	
diffractometer	
Absorption correction: multi-scan	
(CrysAlis RED; Oxford	
Diffraction, 2007)	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.059$	H atoms treated by a mixture of
$wR(F^2) = 0.194$	independent and constrained
S = 1.07	refinement
4354 reflections	$\Delta \rho_{\rm max} = 0.41 \ {\rm e} \ {\rm \AA}^{-3}$
174 parameters	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O4^i$	0.867 (17)	2.234 (17)	3.0991 (14)	176.2 (15)
Symmetry code: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.			

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

RJB acknowledges the NSF-MRI program for funding to purchase the X-ray CCD diffractometer. JJ is grateful to the UGC [F. No. 30-71/2004(SR)], New Delhi, India, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2035).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171.32. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Thiruvalluvar, A., Balamurugan, S., Jayabharathi, J. & Manimekalai, A. (2007). Acta Cryst. E63, o2910.

supplementary materials

Acta Cryst. (2008). E64, o59 [doi:10.1107/S1600536807062204]

t-3-Ethyl-r-2,c-6-bis(2-furyl)piperidin-4-one

S. Balamurugan, A. Thiruvalluvar, R. J. Butcher, A. Manimekalai and J. Jayabharathi

Comment

Thiruvalluvar *et al.* (2007) have reported a crystal structure of t3-benzyl-r2,c-6-di-2-furylpiperidin-4-one wherein the piperidine ring is in chair form. In the title molecule, $C_{15}H_{17}NO_3$, Fig.1., the piperidine ring adopts a chair conformation. The dihedral angle between the two furyl rings is 72.4 (1)°. The ethyl group in the 3-position and the furyl rings at positions 2 and 6 have equatorial orientations. Molecules are linked by N1—H1…O4 hydrogen bonds, Fig.2., forming an infinite one-dimensional chain with the base vector (0 0 1).

Experimental

A mixture of ammonium acetate (100 mmol, 7.7 g), furfuraldehyde (200 mmol, 16.5 ml) and methyl propyl ketone (100 mmol, 10.6 ml) in distilled ethanol was heated first to boiling. After cooling, the viscous liquid obtained was dissolved in ether (200 ml) and shaken with 10 ml of conc. hydrochloric acid. The precipitated hydrochloride of the title compound was removed by filtration and washed first with 40 cc mixture of ethanol and ether (1:1 v/v) and then with ether to remove most of the coloured impurities. The base was liberated from an alcoholic solution by adding aqueous ammonia and then diluted with water. It was recrystallized from alcohol. The yield of the isolated product was 13.5 g (70%).

Refinement

The N-bound H atom was found in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms with C—H = 0.95-1.00 Å and $U_{iso} = 1.2-1.5U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound with the atomic numbering and 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radius.

Fig. 2. The molecular packing of the title compound, viewed down the *a* axis showing the N—H···O (dashed lines) hydrogen bonds.

t-3-Ethyl-r-2,c-6-bis(2-furyl)piperidin-4-one

Crystal data	
C ₁₅ H ₁₇ NO ₃	$F_{000} = 552$
$M_r = 259.30$	$D_{\rm x} = 1.267 {\rm ~Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Melting point: 320 K
Hall symbol: -P 2ybc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 5.1620 (2) Å	Cell parameters from 5794 reflections
<i>b</i> = 20.2855 (9) Å	$\theta = 4.7 - 32.4^{\circ}$
c = 12.9825 (5) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 91.128 \ (3)^{\circ}$	T = 200 (2) K
$V = 1359.18 (10) \text{ Å}^3$	Plate, colourless
Z = 4	$0.41 \times 0.36 \times 0.18 \text{ mm}$

Data collection

4354 independent reflections
2961 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.072$
$\theta_{\text{max}} = 32.4^{\circ}$
$\theta_{\min} = 4.7^{\circ}$
$h = -7 \rightarrow 7$
$k = -29 \rightarrow 23$
$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.059$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.194$	$w = 1/[\sigma^2(F_o^2) + (0.1195P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\text{max}} = <0.001$
4354 reflections	$\Delta \rho_{max} = 0.41 \text{ e } \text{\AA}^{-3}$
174 parameters	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
04	0.7516 (2)	0.19399 (5)	0.70845 (7)	0.0423 (3)
O22	0.65339 (19)	0.10804 (6)	0.32132 (8)	0.0390 (3)
O62	0.43126 (18)	0.40669 (5)	0.50031 (7)	0.0332 (3)
N1	0.6097 (2)	0.24278 (5)	0.41720 (8)	0.0246 (3)
C2	0.7958 (2)	0.19114 (6)	0.44599 (9)	0.0236 (3)
C3	0.6869 (3)	0.15193 (6)	0.53734 (9)	0.0262 (3)
C4	0.6510(2)	0.20108 (6)	0.62400 (9)	0.0273 (3)
C5	0.4922 (3)	0.26132 (6)	0.59650 (9)	0.0278 (3)
C6	0.5885 (2)	0.29338 (6)	0.49665 (9)	0.0237 (3)
C13	0.8496 (4)	0.09209 (8)	0.57028 (12)	0.0435 (5)
C14	0.6945 (5)	0.04322 (9)	0.63338 (16)	0.0622 (7)
C21	0.8466 (2)	0.14932 (6)	0.35453 (9)	0.0259 (3)
C23	0.7409 (3)	0.07793 (9)	0.23394 (12)	0.0468 (5)
C24	0.9769 (4)	0.09963 (9)	0.21229 (12)	0.0485 (5)
C25	1.0469 (3)	0.14554 (8)	0.29020 (12)	0.0382 (4)
C61	0.4080 (2)	0.34542 (6)	0.45684 (9)	0.0258 (3)
C63	0.2484 (2)	0.44582 (5)	0.45159 (9)	0.0374 (4)
C64	0.1172 (2)	0.41118 (5)	0.38123 (9)	0.0405 (5)
C65	0.2180 (3)	0.34610 (7)	0.38376 (11)	0.0356 (4)
H1	0.657 (3)	0.2606 (8)	0.3599 (13)	0.028 (4)*
H2	0.96189	0.21250	0.46873	0.0282*
Н3	0.51127	0.13546	0.51602	0.0314*
H5A	0.50437	0.29363	0.65353	0.0333*
H5B	0.30808	0.24859	0.58727	0.0333*
H6	0.76302	0.31334	0.51011	0.0284*
H13A	1.00135	0.10725	0.61164	0.0521*
H13B	0.91449	0.06968	0.50816	0.0521*
H14A	0.80508	0.00579	0.65282	0.0932*
H14B	0.54586	0.02745	0.59223	0.0932*
H14C	0.63285	0.06498	0.69568	0.0932*
H23	0.64657	0.04619	0.19461	0.0561*
H24	1.07879	0.08681	0.15554	0.0582*
H25	1.20538	0.16918	0.29591	0.0458*
H63	0.22022	0.49111	0.46625	0.0449*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

H64	-0.01859	0.42700	0.33741	0.0486*
H65	0.16260	0.31003	0.34216	0.0427*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O4	0.0628 (7)	0.0404 (6)	0.0232 (5)	0.0127 (5)	-0.0095 (4)	-0.0034 (4)
O22	0.0381 (5)	0.0437 (6)	0.0353 (5)	-0.0029 (4)	0.0006 (4)	-0.0178 (5)
O62	0.0413 (6)	0.0228 (4)	0.0352 (5)	0.0053 (4)	-0.0039 (4)	-0.0016 (4)
N1	0.0316 (5)	0.0236 (5)	0.0185 (4)	0.0023 (4)	0.0002 (3)	-0.0006 (4)
C2	0.0274 (6)	0.0222 (6)	0.0210 (5)	0.0013 (4)	-0.0016 (4)	-0.0024 (4)
C3	0.0372 (7)	0.0208 (6)	0.0205 (5)	0.0027 (5)	-0.0012 (4)	0.0015 (4)
C4	0.0352 (6)	0.0271 (6)	0.0197 (5)	0.0005 (5)	0.0015 (4)	0.0006 (4)
C5	0.0369 (7)	0.0249 (6)	0.0217 (5)	0.0054 (5)	0.0018 (4)	-0.0024 (4)
C6	0.0285 (6)	0.0194 (5)	0.0230 (5)	0.0009 (4)	-0.0026 (4)	-0.0022 (4)
C13	0.0684 (10)	0.0324 (7)	0.0295 (6)	0.0188 (7)	0.0000 (6)	0.0034 (6)
C14	0.1052 (16)	0.0309 (8)	0.0497 (10)	-0.0023 (9)	-0.0165 (10)	0.0132 (8)
C21	0.0292 (6)	0.0262 (6)	0.0221 (5)	0.0047 (5)	-0.0009 (4)	-0.0013 (4)
C23	0.0644 (11)	0.0453 (9)	0.0303 (7)	0.0166 (8)	-0.0064 (7)	-0.0178 (7)
C24	0.0660 (11)	0.0504 (10)	0.0295 (7)	0.0227 (8)	0.0118 (7)	-0.0069 (6)
C25	0.0408 (8)	0.0346 (7)	0.0397 (8)	0.0044 (6)	0.0124 (6)	-0.0004 (6)
C61	0.0324 (6)	0.0200 (5)	0.0250 (5)	0.0007 (5)	0.0019 (4)	0.0008 (4)
C63	0.0446 (8)	0.0267 (7)	0.0410 (8)	0.0102 (6)	0.0034 (6)	0.0049 (5)
C64	0.0420 (8)	0.0370 (8)	0.0423 (8)	0.0091 (6)	-0.0049 (6)	0.0100 (6)
C65	0.0396 (7)	0.0304 (7)	0.0364 (7)	0.0023 (6)	-0.0083 (5)	0.0008 (5)

Geometric parameters (Å, °)

O4—C4	1.2124 (15)	C61—C65	1.3512 (19)
O22—C21	1.3656 (16)	C63—C64	1.3276 (15)
O22—C23	1.3727 (19)	C64—C65	1.4192 (18)
O62—C61	1.3693 (16)	С2—Н2	1.0000
O62—C63	1.3775 (14)	С3—Н3	1.0000
N1—C2	1.4648 (15)	С5—Н5А	0.9900
N1—C6	1.4608 (16)	С5—Н5В	0.9900
N1—H1	0.867 (17)	С6—Н6	1.0000
C2—C21	1.4868 (17)	C13—H13A	0.9900
C2—C3	1.5432 (17)	C13—H13B	0.9900
C3—C4	1.5174 (17)	C14—H14A	0.9800
C3—C13	1.532 (2)	C14—H14B	0.9800
C4—C5	1.5104 (18)	C14—H14C	0.9800
C5—C6	1.5414 (17)	С23—Н23	0.9500
C6—C61	1.4936 (16)	C24—H24	0.9500
C13—C14	1.523 (3)	С25—Н25	0.9500
C21—C25	1.3440 (19)	С63—Н63	0.9500
C23—C24	1.331 (3)	С64—Н64	0.9500
C24—C25	1.417 (2)	С65—Н65	0.9500
O4…C14	3.222 (2)	H1…C65	2.875 (16)

04…C65 ⁱ	3.3796 (18)	H1····O4 ^{vi}	2.234 (17)
O4…N1 ⁱⁱ	3.0991 (14)	H2…H5B ^{vii}	2.4500
O22···C25 ⁱⁱⁱ	3.2394 (19)	Н2…Н6	2.3600
O22···C13	3.3835 (19)	Н3…О22	2.7000
O22…N1	3.0137 (16)	H3…H14B	2.4100
O62…C23 ⁱⁱ	3.4148 (18)	H5A…C23 ⁱⁱ	3.0500
04…H65 ⁱ	2.7200	H5A…H25 ^v	2.5500
O4…H1 ⁱⁱ	2.234 (17)	H5B…H2 ⁱⁱⁱ	2.4500
O4…H14C	2.6900	H6····C65 ^{vii}	2.9700
O4…H13A	2.5300	H6…H2	2.3600
O22…H3	2.7000	H13A…O4	2.5300
O22…H25 ⁱⁱⁱ	2.6400	H13B…O22	2.8600
O22…H13B	2.8600	H13B…C21	2.5900
O62…H63 ^{iv}	2.7700	H14A…C24 ^{ix}	2.9700
O62…H23 ⁱⁱ	2.9000	H14B…H3	2.4100
O62…H24 ^v	2.7400	H14C…O4	2.6900
N1…O22	3.0137 (16)	H14C…C4	2.9200
N1…O4 ^{vi}	3.0991 (14)	H14C…H64 ⁱ	2.5500
N1…H65	2.8400	H23····C63 ^{xii}	2.8400
C13…O22	3.3835 (19)	H23···H63 ^{xii}	2.4800
C14…O4	3.222 (2)	H23…O62 ^{vi}	2.9000
C23…O62 ^{vi}	3.4148 (18)	H24···O62 ^{xiii}	2.7400
C25····O22 ^{vii}	3.2394 (19)	H24···C63 ^{xiii}	2.8800
C65…O4 ^{viii}	3.3796 (18)	H25····O22 ^{vii}	2.6400
C4···H14C	2.9200	H25···H5A ^{xiii}	2.5500
C14…H64 ⁱ	3.0700	H63…H23 ^x	2.4800
C21…H13B	2.5900	H63···O62 ^{iv}	2.7700
C23···H5A ^{vi}	3.0500	H63····C63 ^{xi}	2.9500
C24…H14A ^{ix}	2.9700	H63····H63 ^{xi}	2.4800
C63…H23 ^x	2.8400	H64····C14 ^{viii}	3.0700
C63…H63 ^{xi}	2.9500	H64···H14C ^{viii}	2.5500
C63…H24 ^v	2.8800	H65…N1	2.8400
С65…Н1	2.875 (16)	H65····O4 ^{viii}	2.7200
C65····H6 ⁱⁱⁱ	2.9700		
C21—O22—C23	106.48 (11)	С2—С3—Н3	108.00
C61—O62—C63	106.26 (9)	С4—С3—Н3	108.00
C2—N1—C6	112.35 (9)	С13—С3—Н3	108.00
C2—N1—H1	108.8 (10)	C4—C5—H5A	109.00
C6—N1—H1	109.8 (11)	C4—C5—H5B	109.00
N1—C2—C3	108.52 (9)	С6—С5—Н5А	109.00
N1—C2—C21	109.23 (9)	С6—С5—Н5В	109.00
C3—C2—C21	113.10 (10)	H5A—C5—H5B	108.00
C2—C3—C4	106.43 (10)	N1—C6—H6	109.00

supplementary materials

C4—C3—C13	112.82 (11)	С5—С6—Н6	109.00
C2—C3—C13	114.64 (12)	С61—С6—Н6	109.00
O4—C4—C5	122.04 (11)	C3—C13—H13A	109.00
O4—C4—C3	122.42 (11)	С3—С13—Н13В	109.00
C3—C4—C5	115.47 (10)	C14—C13—H13A	109.00
C4—C5—C6	110.96 (11)	C14—C13—H13B	109.00
N1—C6—C5	109.10 (10)	H13A—C13—H13B	108.00
C5—C6—C61	112.33 (10)	C13—C14—H14A	109.00
N1—C6—C61	107.89 (9)	C13—C14—H14B	109.00
C3—C13—C14	112.00 (16)	C13—C14—H14C	109.00
O22—C21—C25	109.56 (11)	H14A—C14—H14B	109.00
O22—C21—C2	117.57 (9)	H14A—C14—H14C	109.00
C2—C21—C25	132.75 (12)	H14B—C14—H14C	109.00
O22—C23—C24	110.18 (14)	O22—C23—H23	125.00
C23—C24—C25	106.76 (15)	С24—С23—Н23	125.00
C21—C25—C24	107.02 (14)	C23—C24—H24	127.00
O62—C61—C65	109.68 (11)	C25—C24—H24	127.00
C6—C61—C65	133.59 (12)	C21—C25—H25	126.00
O62—C61—C6	116.74 (10)	С24—С25—Н25	126.00
O62—C63—C64	110.28 (9)	O62—C63—H63	125.00
C63—C64—C65	107.13 (10)	С64—С63—Н63	125.00
C61—C65—C64	106.65 (12)	С63—С64—Н64	126.00
N1—C2—H2	109.00	С65—С64—Н64	126.00
C3—C2—H2	109.00	С61—С65—Н65	127.00
С21—С2—Н2	109.00	С64—С65—Н65	127.00
C21—O22—C23—C24	-0.64 (18)	C4—C3—C13—C14	77.18 (17)
C23—O22—C21—C2	176.79 (12)	C2—C3—C13—C14	-160.78 (13)
C23—O22—C21—C25	0.33 (16)	C2—C3—C4—O4	-123.63 (12)
C63—O62—C61—C65	0.00 (14)	C13—C3—C4—C5	179.97 (13)
C63—O62—C61—C6	179.71 (9)	C3—C4—C5—C6	-49.62 (14)
C61—O62—C63—C64	-0.05 (14)	O4—C4—C5—C6	127.45 (12)
C6—N1—C2—C21	-168.73 (9)	C4—C5—C6—N1	50.06 (13)
C6—N1—C2—C3	67.56 (12)	C4—C5—C6—C61	169.65 (10)
C2—N1—C6—C5	-61.28 (12)	C5—C6—C61—C65	-97.83 (16)
C2—N1—C6—C61	176.43 (9)	C5—C6—C61—O62	82.53 (12)
C21—C2—C3—C13	53.53 (14)	N1—C6—C61—O62	-157.19 (10)
C3—C2—C21—O22	49.48 (14)	N1-C6-C61-C65	22.46 (18)
N1—C2—C21—C25	103.97 (16)	C2-C21-C25-C24	-175.66 (14)
N1—C2—C3—C4	-59.65 (12)	O22—C21—C25—C24	0.07 (16)
C3—C2—C21—C25	-135.07 (15)	O22—C23—C24—C25	0.7 (2)
N1—C2—C3—C13	174.89 (11)	C23—C24—C25—C21	-0.46 (19)
C21—C2—C3—C4	178.99 (9)	O62—C61—C65—C64	0.07 (16)
N1—C2—C21—O22	-71.49 (13)	C6—C61—C65—C64	-179.60 (12)
C13—C3—C4—O4	2.92 (18)	O62—C63—C64—C65	0.09 (13)
C2—C3—C4—C5	53.42 (14)	C63—C64—C65—C61	-0.10 (14)

Symmetry codes: (i) *x*+1, -*y*+1/2, *z*+1/2; (ii) *x*, -*y*+1/2, *z*+1/2; (iii) *x*-1, *y*, *z*; (iv) -*x*+1, -*y*+1, -*z*+1; (v) *x*-1, -*y*+1/2, *z*+1/2; (vi) *x*, -*y*+1/2, *z*-1/2; (vii) *x*+1, *y*, *z*; (viii) *x*-1, -*y*+1/2, *z*-1/2; (ix) -*x*+2, -*y*, -*z*+1; (x) -*x*+1, *y*+1/2, -*z*+1/2; (xi) -*x*, -*y*+1, -*z*+1; (xii) -*x*+1, *y*-1/2, -*z*+1/2; (xii) *x*+1, -*y*+1/2, *z*-1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1···O4 ^{vi}	0.867 (17)	2.234 (17)	3.0991 (14)	176.2 (15)
Symmetry codes: (vi) x , $-y+1/2$, $z-1/2$.				

